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Abstract. We introduce a biased diffusion model of aggregation at a surface, which reduces 
to a ballistic model in one limit. We characterise the structure of the aggregates by a variety 
of properties and find that i t  is a strong function of the parameter governing the diffusion 
process. For thin films there is a crossover between a regime where there are several highly 
ramified pseudo-one-dimensional clusters and another regime where there is a single cluster 
which spans the lattice in both directions. 

1. Introduction 

Many naturally occurring processes, such as crystal growth and the formation of 
colloidal particles, involve the phenomenon of aggregation. One can imagine a number 
of different types of growth process ranging from diffusion-limited aggregation (Witten 
and Sander 1981) to ballistic processes where the particles are constrained to move 
along straight lines (Vold 1963, Sutherland 1966, 1967, Bensimon e? al 1984a, b, Liang 
and Kadanoff 1986, Ramanlal and Sander 1985). The structure ofthe aggregate strongly 
depends on the dynamics of the growth process. 

A variety of models has been constructed to study the importance of various features 
of the growth process, and a great deal of attention has been directed to characterising 
the growing cluster by its fractal dimension (Forrest and Witten 1979, Meakin 1983a, b, 
Meakin and Stanley 1983, Meakin and Deutch 1984, Muthukumar 1983). The effect 
of anisotropic diffusion on aggregation at a single seed has been considered by Meakin 
(1983c, 1984). 

Much of the recent literature has focused on the growth of an aggregate from a 
single seed particle but some work has been carried out on aggregation at a surface 
(Vicsek 1984, Meakin 1983d, Racz and Vicsek 1984, Voss 1984, Jullien et al 1984). Of 
course there is an enormous literature on crystal growth at a surface (Weeks and Gilmer 
1979, Leamy et al 1980) but recent papers have been concerned with the fractal nature 
of the object and with a comparison between growth at a surface and growth from a 
single seed. 

In this paper we introduce a new biased diffusion model for crystal growth at a 
surface. It possesses features of both the diffusion-limited aggregation (DLA) model 
and the ballistic model. (As is usual in models of this type effects of surface tension 
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are ignored.) In the DLA model, clusters are generated by the adhesion of diffusing 
particles to the surface of a growing aggregate. In the ballistic model there is no 
diffusion and particles move rectilinearly towards the surface of the growing cluster 
to which they adhere. In our biased diffusion model particles move on a lattice, towards 
the surface with probability p and parallel to the surface with probability ( 1 - p ) .  
Clearly, for p = 1 this diffusion process reduces to a ballistic model while for small p 
the lateral diffusion dominates. In any aggregation process in an external (e.g. gravita- 
tional) field, the diffusion process is biased and our model, while idealised, incorporates 
this feature. We study a variety of properties which characterise the fractal nature of 
the aggregates. For thin films, we observe a qualitative difference in the structure of 
the aggregate for small and large p and the main results of this paper are concerned 
with the characterisation of this crossover phenomenon. 

2. Model for the aggregation process 

We consider a subset of the square lattice with 1 S x s N, 1 s y s  M and periodic 
boundary conditions on x, in order to simulate an infinite half plane. Particles are 
introduced one at a time at a randomly chosen x coordinate on the upper boundary, 
y = M,  and perform a biased random walk with zero probability for an upward step, 
probability p for a downward step and equal probabilities, ;( 1 - p ) ,  in the positive and 
negative x directions. A particle continues to move until it either reaches the lower 
boundary, y = 1, at which point it sticks, or until it reaches a point adjacent to a site 
already occupied by a particle. Of course, p must be positive since otherwise the 
particle does not move towards the line of absorbing sites. 

The process is continued until a site on the line y = M  is occupied, so that a 
connected set of occupied sites (which we call a cluster) spans the lattice in the y 
direction. This is reminiscent of a percolation problem at the percolation threshold 
and suggests an analysis of the results using concepts from that field (Stauffer 1979). 

During the aggregation process we distinguish between the different clusters and 
focus attention on the cluster with a site in y = M, which we call the spanning cluster. 
In particular we examine the fractal dimension of this cluster, the span in the x direction 
and its variance, the fraction of occupied sites in the spanning cluster and its variance, 
as well as the mean valence of a site in the spanning cluster. These quantities allow 
us to characterise, in various ways, the degree of ramification of the spanning cluster. 

3. Results 

We have carried out calculations for a range of p values, on square arrays of size up 
to 200 x 200 and on various rectangular arrays. All of the numerical results represent 
averages over between 100 and 200 realisations of the growth process. Initially we 
focus attention on the results for square arrays. The first quantity which we examine 
is the mean valence of sites in the spanning cluster, u ( p ) .  This quantity, shown in 
figure 1, exhibits a shallow minimum at about p = 0.3 followed by a nearly linear 
increase; u ( p )  is relatively independent of lattice size. At all p the valence is quite 
small, corresponding to a ramified structure with few cycles. The corresponding values 
of the mean valence of sites in the incipiently percolating cluster for bond and site 
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Figure 1. The p dependence of the mean valence of 
a site in the spanning cluster: 0 , 2 0 0  x 200; 0, 100 x 
100. 
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Figure 2. Probability that an occupied site lies in the 
spanning cluster, as a function of p: 0, 200x200, 
0, lOOx 100. Error bars are shown in some typical 
cases. 

percolation on the square lattice (Whittington et a1 1981) are about 2.25 and 2.50, 
respectively. In the aggregation model the bonds are induced by the occupation of 
the sites and so the value of U for this model should be compared with that for site 
percolation. The clusters in the aggregation model are somewhat more ramified than 
in Bernoullian site percolation, even for large values of p .  

The p dependence of the fraction of occupied sites in the spanning cluster has a 
sigmoidal shape (figure 2), which sharpens as the lattice size increases. For small p 
the spanning cluster accounts for only a small proportion of the occupied sites, but 
at large p almost all the occupied sites are in this cluster. These results suggest a 
crossover between the above kinds of behaviour. At intermediate values of p one 
would therefore expect large fluctuations and this is borne out in the behaviour of the 
variance of the corresponding distribution. 

To investigate this crossover behaviour further we have calculated the mean span 
in the x direction of the spanning cluster, and its variance, and the results are shown 
in figure 3. For small p the clusters have a small span and are highly anisotropic; the 
span increases until for large p the cluster extends over the whole cell and so, because 
of the periodic boundary conditions, over the entire lattice. 

Some of the results discussed above are evident in pictures of typical clusters shown 
in figure 4. At p = 0.1 (figure 4(a ) )  there are several highly ramified, almost-spanning 
clusters, each of which have emanated from a single site in y = 1. As p increases the 
coalescence of clusters becomes important in the growth process, which leads to an 
increase in the average span, as is evident in figure 4(b) .  In the crossover region 
(around p = 0.5) there are fluctuations between clusters which resemble those at small 
p (figure 4(c))  and those which span the lattice in the x direction (figure 4(d)) .  

To investigate the importance of boundary effects we have examined some rec- 
tangular arrays. When the lateral dimension of the array is increased with the height 
fixed ('wide' arrays) we find that, at small p ,  there are several almost-spanning clusters 
each having about the same width as the spanning cluster in the corresponding square 
array with the same height, see figure 5 ( a ) .  At larger values of p we find, at fixed p ,  
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Figure 3. Mean span as a function of p :  0, 200 x 200; 0, 100 x 100, arbitrary units. 
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Figure 4. Configurations at ( a )  p = 0.1, ( b )  p = 0.4, (c )  and ( d )  p = 0.5 for a 200 x 200 
lattice. In these figures the sites of the spanning cluster are represented by full squares 
while the sites belonging to all other clusters are represented by open squares. 
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Figure 5. Configurations for 400x 100 rectangular arrays for ( a )  p =0.1 and ( b )  p = 0.7. 

that the fluctuations in the x span of the clusters increases as the width of the array 
increases, and at fixed array width ( N )  these fluctuations increase as p decreases 
towards the crossover region. One example of a cluster at p = 0.7 is shown in figure 5(  b ) .  

If the mean span in the x direction (figure 3) is taken as a characteristic length L 
of the cluster, the calculations suggest that this length would diverge beyond the 
crossover region for a lattice infinite in the x direction. This conclusion is supported 
by calculations on wide arrays (400 x 100) at p = 1 .O, which yield clusters that have an 
x span equal to the array width N. Another length scale in this problem is the lattice 
spacing 1. However, all our results indicate that the crossover phenomenon is insensitive 
to the value of 1. The qualitative nature of the crossover remains as one changes the 
system from 100 x 100 to 400 x 400, which can be viewed either as decreasing the lattice 
spacing, or as increasing the system size, by a factor of four. 

It is clear from figures 4 and 5 that the stnicture of the spanning cluster changes 
as p varies. We can characterise this change in terms of the fractal dimension of the 
cluster. Two useful quantities which reflect the fractal nature of such objects are the 
capacity and information dimension, defined as follows (Farmer 1982, Farmer et a1 
1983). Consider partitioning the array into square boxes of length E. Let N ( E )  be the 
number of boxes of length E occupied by sites of the spanning cluster. The capacity 
(D,) is given by 

The capacity should be distinguished from the HausdorfI dimension, which is defined 
in terms of a covering of the set by boxes with variable edge length. While these two 
dimensions are equal in many instances, in general they are not (Farmer et a1 1983). 
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If pi is the probability that a randomly chosen site in the spanning cluster occupies 
box i, of length E ,  then the information dimension (DI) is defined as 

z I"=:"' pi log( l l p i )  DI = lim 
E ' O  log(l /&) 

When the probabilities pi are equal then Dc = DI. In general these probabilities will 
not be equal and in this sense one may say that the difference between the values of 
these two dimensions reflects inhomogeneities in the fractal object. These dimensions 
satisfy the inequality Dc 2 DI. We estimate these quantities for each realisation, and 
average over 100 to 200 realisations, at each value of p ;  thus we may also estimate the 
fluctuations in the dimension. The results for the capacity of the spanning cluster for 
200 x 200 arrays are shown in figure 6 .  The sigmoidal shape reflects the crossover from 

0 0.2 0 4 0.6 0.8 1.0 
P 

Figure 6. The p dependence for the capacity of the spanning cluster for 200 x 200 arrays. 

a low-dimensional spanning cluster at small p to an object with dimension close to 
two at high p .  (Since our model reduces to the ballistic model for p = 1, a dimension 
of two is consistent with the results of Bensimon et a1 (1984a, b).) The results for the 
information dimension are very similar, with values characteristically lower by only 
one to two per cent (consistent with the above inequality), indicating that the clusters 
are quite homogeneous. 

The dimension is insensitive to the size of the square array. For instance, at p = 0.1, 
the capacity is 1.39fO.01 for 1OOx 100, 1.401 *0.006 for 200 x 200 and 1.42f0.02 for 
400 x 400. For wide arrays the dimension is very close to that found for square arrays. 
For instance, at p = 0.1 the capacity is 1.39 f 0.02 for a 400 x 100 array. At p = 0.7 the 
capacity is 1.98 for a 400 x 100 array and 1.97 for a 2 0 0 ~  200 array. This provides 
further evidence that the qualitative difference in the structure of the cluster at small 
and large p is insensitive to variations of the array size and shape. 
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4. Discussion 

The parameterp introduced above reflects the importance of diffusion in the aggregation 
process. The growth process is rather different at small and large p :  at small p the 
particle typically makes many moves in the x direction between downward moves in 
the y direction; this means that clusters tend to grow by addition of particles at or 
near the top of the cluster and leads to several isolated clusters of similar size. This 
process leads to a gradual spreading, and pinching out of small clusters. At large p 
the particles do not explore the x direction between successive moves in the y direction, 
and this favours the formation of a large more compact cluster by aggregation of 
smaller clusters. 

We wish to contrast our results with those of Jullien er al (1984) who considered 
directed diffusion at a surface. They concentrated on arrays whose height is much 
greater than their lateral dimension. They found that the fractal dimension was close 
to two for all values of their anisotropy parameter. The compact nature oftheir clusters 
arises from the shape of the array. On the other hand, our work has focused on the 
other extreme of thin films. 

One of the main results of this paper is the existence in thin films of a sudden 
crossover between the two regimes. The large fluctuations in the span and in the fractal 
dimensions of the cluster suggest a close analogy with critical phenomena. This 
crossover reflects the difference in the mechanism of growth in the two regimes. 

It is clear that the nature of the diffusion process strongly affects the morphology 
of the thin film. 
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